Mechanical and tribological performance of TC4 alloy with surface plasma molybdenization

Nengjun Ben, Pengfei Zhou, Guojun Yan, Wenping Liang


A plasma molybdenized layer has been applied on titanium alloy TC4 by double-glow plasma surface alloying technique (DPSA) to improve its wear resistance. The distribution of the microstructures, morphology and composition of the molybdenized layer are analyzed by means of scanning electronic microscopy (SEM) and X-ray diffraction (XRD). The alloying layer is composed of the Mo-deposited layer 12 μm thick and the Mo-diffused layer 15 μm thick. Mo exists in the form of pure element and its solid solution (Ti, Al8, Mo, V). The mechanical properties of the molybdenized layer are evaluated by means of a nano-indentation test. The nano-hardness and elasticity modulus of the surface-modified layer are 13.832 GPa and 804.27 GPa, respectively. These values are much higher than those of the TC4 substrate. The tribological behavior is studies by means of dry sliding in the ball-on-disc mode under different loads (1.3–11.3N) and sliding speeds (5, 10, 15, 20 m/min). The friction coefficient and specific wear ratio of the molybdenized layer decrease greatly if compared to those of the TC4 bare metal.

Ключові слова

double-glow plasma surface alloying; tc4 alloy; plasma molybdenization; tribological performance

Повний текст:

PDF (English)


Kaestner P, Olfe J, Rie K-T. Surface and Coatings Technology,142-144( 2001), 248 – 52.

H.J. Rack, J.I. Qazi. Materials Science and Engineering, C26 (2006), 1269 – 1277.

S. Barril, N. Debaud, S. Mischler, D. Landolt, Wear, 252(2002), 744 – 754.

Dingshun She, Wen Yue, Zhiqiang Fu, et al. Surface and Coatings Technology, 264 (2015), 32 – 40.

Yong Luo, Haibo Jiang, Gang Cheng,et al.Journal of Bionic Engineering, 8(2011), 86 – 89.

D. Nolan, S.W. Huang, V. Leskovsek, S. Braun. Surface and Coatings Technology, 200 (2006), 5698 – 5705.

E. Marin, R. Offoiach, M. Regis, et al. Materials and Design,89(2016), 314 – 322.

C. Pierret, L.Maunoury c, I.Monnet , et al. Wear,319(2014),19 – 26.

B. Tang, PQ. Wu, Z. XU, et al. Surface and Coatings Technology, 179 (2004), 333 – 339.

Yu Xiushui, Liang Wenping, Miao Qiang, et al. Rare Metal Materials and Engineering, 2015, 44(3): 0557 – 0562.

Beilei Ren, Qiang Miao, Wenping Liang, et al. Surface and Coatings Technology, 228(2013), S206 – S209.

W. Liang, X. Zhong, Q. Miao, X.- Liu, et al. Surface and Coatings Technology, 201 (2007), 5068.

B. Tang, X.F. Hu, K.W. Xu, C.Z. Wang, Trans. Non-ferrous Met. Soc. China. (1997), 7 (4) 88 – 91.

R. Liu, D. Y. Li, Y. S. Xie, R. Llewellin, H. M. Hawthorne, Indentation behaviour of seudoelastic TiNi alloy, Scripta Mater, 41(1999), 691 – 696.

M. M. Silva, M. Ueda, L. Pichon, et al. Nuclear Instruments and Methods in Physics Research, B 257 (2007), 722 – 726.

I. M. Hutchings, Wear of Engineering Material, CRC Press, Boca Raton, FL,(1992), pp. 28.



  • Поки немає зовнішніх посилань.